Алгебра 9 класс учебник Макарычев, Миндюк ответы – номер 802

  • Тип: ГДЗ, Решебник.
  • Авторы: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И.
  • Часть: без частей.
  • Год: 2023-2025.
  • Серия: Школа России (ФГОС).
  • Издательство: Просвещение.

Номер 802.

Решите неравенство:

а) (5 – 2х)($$\sqrt{6}$$ – 3) < 0;
б) (4 – $$\sqrt{10}$$)(3х + 1) > 0;
в) $$\frac{\sqrt{3} - \sqrt{2}}{2 + 7х}$$ < 0;
г) $$\frac{\sqrt{7} - \sqrt{8}}{4 + 5х}$$ > 0.

Ответ:

а) (5 – 2х)($$\sqrt{6}$$ – 3) < 0
т.к. $$\sqrt{6}$$ – 3 < 0, то
5 – 2x > 0
–2x > –5
x < 2,5
Ответ: (– ∞; 2,5)

б) (4 – $$\sqrt{10}$$)(3х + 1) > 0
т.к. 4 – $$\sqrt{10}$$ > 0, то
3x + 1 > 0
3x > –1
x = –1/3
Ответ: (–1/3; + ∞)

в) $$\frac{\sqrt{3} - \sqrt{2}}{2 + 7х}$$ < 0 ($$\sqrt{3}$$$$\sqrt{2}$$)(2 + 7х) < 0
т.к. $$\sqrt{3}$$$$\sqrt{2}$$ < 0, то
7х < –22
x < –2/7
Ответ: (– ∞; –2/7)

г) $$\frac{\sqrt{7} - \sqrt{8}}{4 + 5х}$$ > 0
($$\sqrt{7}$$$$\sqrt{8}$$)(4 + 5х) > 0
т.к. $$\sqrt{7}$$$$\sqrt{8}$$ < 0 то
4 + 5x < 0
5x < –4
x < –0,8
Ответ: (– ∞; –0,8)

Конец страницы
Переход на другие страницы Содержание
Информация на этой странице была полезной?
0/5 (0 голосов)
Нашли ошибку на сайте? Помогите нам ее исправить!

С подпиской рекламы не будет

Подключите премиум подписку со скидкой в 40% за 149 ₽

Понравились решения?
Напишите свой комментарий.