Алгебра 8 класс учебник Макарычев, Миндюк ответы – номер 705
- Тип: ГДЗ, Решебник.
- Авторы: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И.
- Часть: без частей.
- Год: 2019-2024.
- Серия: Школа России (ФГОС).
- Издательство: Просвещение.
Номер 705.
Номер 705.
Решите систему уравнений:
а) $$
\left\{\begin{array}{l}
x+y=8 \\
x y=-20
\end{array}\right.
$$
б) $$
\left\{\begin{array}{l}
x-y=0,8 \\
x y=2,4
\end{array}\right.
$$
в) $$
\left\{\begin{array}{l}
x^2-y^2=8 \\
x-y=4
\end{array}\right.
$$
г) $$
\left\{\begin{array}{l}
x^2+y^2=5 \\
x+y=-3
\end{array}\right.
$$
а) $$
\left\{\begin{array} { l }
{ x + y = 8 } \\
{ x y = - 2 0 }
\end{array} \left\{\begin{array} { l }
{ y = 8 - x } \\
{ x ( 8 - x ) = - 2 0 }
\end{array} \left\{\begin{array}{l}
y=8-x \\
-x^2+8 x+20=0
\end{array}\right.\right.\right.
$$
−х² + 8х + 20 = 0
D = b² − 4ac = 8² − 4 ⋅ (−1) ⋅ 20 = 64 + 80 = 144 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{-8+\sqrt{144}}{2(-1)}
$$ = −8 + 12/−2 = 4/−2 = −2
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{-8-\sqrt{144}}{2(-1)}=
$$ = −8 − 12/−2 = −20/−2 = 10
x₁ = −2, x₂ = 10
$$
\left\{\begin{array} { l }
{ x _ { 1 } = - 2 } \\
{ y _ { 1 } = 8 + 2 = 1 0 }
\end{array} \left\{\begin{array}{l}
x_1=-2 \\
y_1=10
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = 1 0 } \\
{ y _ { 2 } = 8 - 1 0 = - 2 }
\end{array} \left\{\begin{array}{l}
x_2=10 \\
y_2=-2
\end{array}\right.\right.
$$
(−2; 10), (10; −2)
б) $$
\left\{\begin{array} { l }
{ x - y = 0 , 8 } \\
{ x y = 2 , 4 }
\end{array} \left\{\begin{array} { l }
{ y = x - 0 , 8 } \\
{ x ( x - 0 , 8 ) = 2 , 4 }
\end{array} \left\{\begin{array}{l}
y=x-0,8 \\
x^2-0,8 x-2,4=0
\end{array}\right.\right.\right.
$$
х² − 0,8х − 2,4 = 0
D = b² − 4ac = (−0,8)² − 4 ⋅ 1 ⋅ (−2,4) = 0,64 + 9,6 = 10,24 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{0,8+\sqrt{10,24}}{2 ⋅ 1}
$$ = 0,8 + 3,2/2 = 4/2 = 2
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{0,8-\sqrt{10,24}}{2 ⋅ 1}
$$ = 0,8 − 3,2/2 = −2,4/2 = −1,2
x₁ = 2, x₂ = −1,2
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 2 } \\
{ y _ { 1 } = 2 - 0 , 8 = 1 , 2 }
\end{array} \left\{\begin{array}{l}
x_1=2 \\
y_1=1,2
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = - 1 , 2 } \\
{ y _ { 2 } = - 1 , 2 - 0 , 8 = - 2 }
\end{array} \left\{\begin{array}{l}
x_2=-1,2 \\
y_2=-2
\end{array}\right.\right.
$$
(2; 1,2), (−1,2; −2)
в) $$
\left\{\begin{array} { l }
{ x ^ { 2 } - y ^ { 2 } = 8 } \\
{ x - y = 4 }
\end{array} \left\{\begin{array}{l}
x^2-(x-4)^2=8 \\
y=x-4
\end{array}\right.\right.
$$ $$
\left\{\begin{array}{l}
x^2-x^2+8 x-16-8=0\left\{\begin{array}{l}
8 x-24=0 \\
y=x-4
\end{array}\right. \\
y=x-4
\end{array}\right.
$$
$$
\left\{\begin{array} { l }
{ 8 x = 2 4 } \\
{ y = x - 4 }
\end{array} \left\{\begin{array} { l }
{ x = 2 4 \div 8 } \\
{ y = x - 4 }
\end{array} \left\{\begin{array} { l }
{ x = 3 } \\
{ y = 3 - 4 = - 1 }
\end{array} \left\{\begin{array}{l}
x=3 \\
y=-1
\end{array}\right.\right.\right.\right.
$$
(3; −1)
г) $$
\left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } = 5 } \\
{ x + y = - 3 }
\end{array} \left\{\begin{array}{l}
x^2+(-x-3)^2=5 \\
y=-x-3
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ x ^ { 2 } + x ^ { 2 } + 6 x + 9 - 5 = 0 } \\
{ y = - x - 3 }
\end{array} \left\{\begin{array}{l}
2 x^2+6 x+4=0 \\
y=-x-3
\end{array}\right.\right.
$$
2х² + 6х + 4 = 0
D = b² − 4ac = 6² − 4 ⋅ 2 ⋅ 4 = 36 − 32 = 4 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{-6+\sqrt{4}}{2 ⋅ 2}
$$ = −6 + 2/4 = −4/2 = −1
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{-6-\sqrt{4}}{2 ⋅ 2}
$$ = −6 − 2/4 = −8/2 = −2
x₁ = −1, x₂ = −2
$$
\left\{\begin{array} { l }
{ x _ { 1 } = - 1 } \\
{ y _ { 1 } = 1 - 3 = - 2 }
\end{array} \left\{\begin{array}{l}
x_1=-1 \\
y_1=-2
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = - 2 } \\
{ y _ { 2 } = 2 - 3 = - 1 }
\end{array} \left\{\begin{array}{l}
x_2=-2 \\
y_2=-1
\end{array}\right.\right.
$$
(−1; −2), (−2; −1)
С подпиской рекламы не будет
Подключите премиум подписку со скидкой в 40% за 149 ₽
Напишите свой комментарий.