Алгебра 8 класс учебник Макарычев, Миндюк ответы – номер 703
- Тип: ГДЗ, Решебник.
- Авторы: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И.
- Часть: без частей.
- Год: 2019-2024.
- Серия: Школа России (ФГОС).
- Издательство: Просвещение.
Номер 703.
Номер 703.
Решите систему уравнений, используя способ подстановки:
а) $$
\left\{\begin{array}{l}
x=3-y \\
y^2-x=39
\end{array}\right.
$$
б) $$
\left\{\begin{array}{l}
y=1+x \\
x+y^2=-1
\end{array}\right.
$$
в) $$
\left\{\begin{array}{l}
x^2+y=14 \\
y-x=8
\end{array}\right.
$$
г) $$
\left\{\begin{array}{l}
x+y=4 \\
y+x y=6
\end{array}\right.
$$
а) $$
\left\{\begin{array} { l }
{ x = 3 - y } \\
{ y ^ { 2 } - x = 3 9 }
\end{array} \left\{\begin{array}{l}
x=3-y \\
y^2-(3-y)=39
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ x = 3 - y } \\
{ y ^ { 2 } - 3 + y - 3 9 = 0 }
\end{array} \left\{\begin{array}{l}
x=3-y \\
y^2+y-42=0
\end{array}\right.\right.
$$
у² + у − 42 = 0
D = b² − 4ac = 1² − 4 ⋅ 1 ⋅ (−42) = 1 + 168 = 169 > 0, имеет 2 корня
y₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{-1+\sqrt{169}}{2 ⋅ 1}
$$ = −1 + 13/2 = 12/2 = 6
y₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{-1-\sqrt{169}}{2 ⋅ 1}
$$ = −1 − 13/2 = −14/2 = −7
y₁ = 6, y₂ = −7
$$
\left\{\begin{array} { l }
{ y _ { 1 } = 6 } \\
{ x _ { 1 } = 3 - 6 = - 3 }
\end{array} \left\{\begin{array}{l}
y_1=6 \\
x_1=-3
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 2 } = - 7 } \\
{ x _ { 2 } = 3 + 7 = 1 0 }
\end{array} \left\{\begin{array}{l}
y_2=-7 \\
x_2=10
\end{array}\right.\right.
$$
(−3; 6), (10; −7)
б) $$
\left\{\begin{array} { l }
{ y = 1 + x } \\
{ x + y ^ { 2 } = - 1 }
\end{array} \left\{\begin{array}{l}
x=y-1 \\
y-1+y^2+1
\end{array}=0\left\{\begin{array}{l}
x=y-1 \\
y+y^2=0
\end{array}\right.\right.\right.
$$
у + у² = 0
у(1 + у) = 0
у = 0, 1 + у = 0, у = −1
$$
\left\{\begin{array} { l }
{ y _ { 1 } = 0 } \\
{ x _ { 1 } = 0 - 1 = - 1 }
\end{array} \left\{\begin{array}{l}
y_1=0 \\
x_1=-1
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 2 } = - 1 } \\
{ x _ { 2 } = - 1 - 1 = - 2 }
\end{array} \left\{\begin{array}{l}
y_2=-1 \\
x_2=-2
\end{array}\right.\right.
$$
(−1; 0), (−2; −1)
в) $$
\left\{\begin{array} { l }
{ x ^ { 2 } + y = 1 4 } \\
{ y - x = 8 }
\end{array} \left\{\begin{array}{l}
x^2+8+x-14 \\
y=8+x
\end{array}=0\left\{\begin{array}{l}
x^2+x-6=0 \\
y=8+x
\end{array}\right.\right.\right.
$$
х² + х − 6 = 0
D = b² − 4ac = 1² − 4 ⋅ 1 ⋅ (−6) = 1 + 24 = 25 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{-1+\sqrt{25}}{2 ⋅ 1}
$$ = −1 + 5/2 = 4/2 = 2
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{-1-\sqrt{25}}{2 ⋅ 1}
$$ = −1 − 5/2 = −6/2 = −3
x₁ = 2, x₂ = −3
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 2 } \\
{ y _ { 1 } = 8 + 2 = 1 0 }
\end{array} \left\{\begin{array}{l}
x_1=2 \\
y_1=10
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = - 3 } \\
{ y _ { 2 } = 8 - 3 = 5 }
\end{array} \left\{\begin{array}{l}
x_2=-3 \\
y_2=5
\end{array}\right.\right.
$$
(2; 10), (−3; 5)
г) $$
\left\{\begin{array} { l }
{ x + y = 4 } \\
{ y + x y = 6 }
\end{array} \left\{\begin{array}{l}
y=4-x \\
4-x+x(4-x)=6
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ y = 4 - x } \\
{ 4 - x + 4 x - x ^ { 2 } - 6 = 0 }
\end{array} \left\{\begin{array}{l}
y=4-x \\
-x^2+3 x-2=0
\end{array}\right.\right.
$$
−х² + 3х − 2 = 0 (−1)
х² − 3х + 2 = 0
D = b² − 4ac = (−3)² − 4 ⋅ 1 ⋅ 2 = 9 − 8 = 1 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{3+\sqrt{1}}{2 ⋅ 1}
$$ = 3 + 1/2 = 4/2 = 2
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{3-\sqrt{1}}{2 ⋅ 1}
$$ = 3 − 1/2 = 2/2 = 1
x₁ = 2, x₂ = 1
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 2 } \\
{ y _ { 1 } = 4 - 2 = 2 }
\end{array} \left\{\begin{array}{l}
x_1=2 \\
y_1=2
\end{array}\right.\right.
$$
$$
\left\{\begin{array}{l}
x_2=1 \\
y_2=4-1
\end{array}=3\left\{\begin{array}{l}
x_2=1 \\
y_2=3
\end{array}\right.\right.
$$
(2; 2), (1; 3)
С подпиской рекламы не будет
Подключите премиум подписку со скидкой в 40% за 149 ₽
Напишите свой комментарий.