Алгебра 8 класс учебник Макарычев, Миндюк ответы – номер 702
- Тип: ГДЗ, Решебник.
- Авторы: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И.
- Часть: без частей.
- Год: 2019-2024.
- Серия: Школа России (ФГОС).
- Издательство: Просвещение.
Номер 702.
Номер 702.
Решите способом подстановки систему уравнений:
а) $$
\left\{\begin{array}{l}
y^2-x=-1 \\
x=y+3
\end{array}\right.
$$
б) $$
\left\{\begin{array}{l}
y=x-1 \\
x^2-2 y=26
\end{array}\right.
$$
в) $$
\left\{\begin{array}{l}
x y+x=-4 \\
x-y=6
\end{array}\right.
$$
г) $$
\left\{\begin{array}{l}
x+y=9 \\
y^2+x=29
\end{array}\right.
$$
а) $$
\left\{\begin{array} { l }
{ y ^ { 2 } - x = - 1 } \\
{ x = y + 3 }
\end{array} \left\{\begin{array}{l}
y^2-(y+3)=-1 \\
x=y+3
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ y ^ { 2 } - y - 3 + 1 = 0 } \\
{ x = y + 3 }
\end{array} \left\{\begin{array}{l}
y^2-y-2=0 \\
x=y+3
\end{array}\right.\right.
$$
у² − у − 2 = 0
D = b² − 4ac = (−1)² − 4 ⋅ 1 ⋅ (−2) = 1 + 8 = 9 > 0, имеет 2 корня
y₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{1+\sqrt{9}}{2 ⋅ 1}
$$ = 1 + 3/2 = 4/2 = 2
y₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{1-\sqrt{9}}{2 ⋅ 1}
$$ = 1 − 3/2 = −2/2 = −1
y₁ = 2, y₂ = −1
$$
\left\{\begin{array} { l }
{ y _ { 1 } = 2 } \\
{ x _ { 1 } = 2 + 3 = 5 }
\end{array} \left\{\begin{array}{l}
y_1=2 \\
x_1=5
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 2 } = - 1 } \\
{ x _ { 2 } = - 1 + 3 = 5 }
\end{array} \left\{\begin{array}{l}
y_2=-1 \\
x_2=2
\end{array}\right.\right.
$$
(5; 2), (2; −1)
б) $$
\left\{\begin{array} { l }
{ y = x - 1 } \\
{ x ^ { 2 } - 2 y = 2 6 }
\end{array} \left\{\begin{array}{l}
y=x-1 \\
x^2-2(x-1)=26
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ y = x - 1 } \\
{ x ^ { 2 } - 2 x + 2 - 2 6 = 0 }
\end{array} \left\{\begin{array}{l}
y=x-1 \\
x^2-2 x-24=0
\end{array}\right.\right.
$$
х² − 2х − 24 = 0
D = b² − 4ac = (−2)² − 4 ⋅ 1 ⋅ (−24) = 4 + 96 = 100 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{2+\sqrt{100}}{2 ⋅ 1}
$$ = 2 + 10/2 = 12/2 = 6
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{2-\sqrt{100}}{2 ⋅ 1}
$$ = 2 − 10/2 = −8/2 = −4
x₁ = 6, x₂ = −4
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 6 } \\
{ y _ { 1 } = 6 - 1 = 5 }
\end{array} \left\{\begin{array}{l}
x_1=6 \\
y_1=5
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = - 4 } \\
{ y _ { 2 } = - 4 - 1 = - 5 }
\end{array} \left\{\begin{array}{l}
x_2=-4 \\
y_2=-5
\end{array}\right.\right.
$$
(6; 5), (−4; −5)
в) $$
\left\{\begin{array} { l }
{ x y + x = - 4 } \\
{ x - y = 6 }
\end{array} \left\{\begin{array}{l}
x(x-6)+x=-4 \\
y=x-6
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ x ^ { 2 } - 6 x + x + 4 = 0 } \\
{ y = x - 6 }
\end{array} \left\{\begin{array}{l}
x^2-5 x+4=0 \\
y=x-6
\end{array}\right.\right.
$$
х² − 5х + 4 = 0
D = b² − 4ac = (−5)² − 4 ⋅ 1 ⋅ 4 = 25 − 16 = 9 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{5+\sqrt{9}}{2 ⋅ 1}
$$ = 5 + 3/2 = 8/2 = 4
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{5-\sqrt{9}}{2 ⋅ 1}
$$ = 5 − 3/2 = 2/2 = 1
x₁ = 4, x₂ = 1
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 4 } \\
{ y _ { 1 } = 4 - 6 = - 2 }
\end{array} \left\{\begin{array}{l}
x_1=4 \\
y_1=-2
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = 1 } \\
{ y _ { 2 } = 1 - 6 = - 5 }
\end{array} \left\{\begin{array}{l}
x_2=1 \\
y_2=-5
\end{array}\right.\right.
$$
(4; −2), (1; −5)
г) $$
\left\{\begin{array} { l }
{ x + y = 9 } \\
{ y ^ { 2 } + x = 2 9 }
\end{array} \left\{\begin{array}{l}
x=9-y \\
y^2+x=29
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ x = 9 - y } \\
{ y ^ { 2 } + 9 - y - 2 9 = 0 }
\end{array} \left\{\begin{array}{l}
x=9-y \\
y^2-y-20=0
\end{array}\right.\right.
$$
у² − у − 20 = 0
D = b² − 4ac = (−1)² − 4 ⋅ 1 ⋅ (−20) = 1 + 80 = 81 > 0, имеет 2 корня
y₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{1+\sqrt{81}}{2 ⋅ 1}
$$ = 1 + 9/2 = 10/2 = 5
y₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{1-\sqrt{81}}{2 ⋅ 1}
$$ = 1 − 9/2 = −8/2 = −4
y₁ = 5, y₂ = −4
$$
\left\{\begin{array} { l }
{ y _ { 1 } = 5 } \\
{ x _ { 1 } = 9 - 5 = 4 }
\end{array} \left\{\begin{array}{l}
y_1=5 \\
x_1=4
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 2 } = - 4 } \\
{ x _ { 2 } = 9 + 4 = 1 3 }
\end{array} \left\{\begin{array}{l}
y_2=-4 \\
x_2=13
\end{array}\right.\right.
$$
(4; 5), (13; −4)
С подпиской рекламы не будет
Подключите премиум подписку со скидкой в 40% за 149 ₽
Напишите свой комментарий.